Detailed marking instructions for each question

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark		
1.			• ¹ identify common denominator	• ¹ $2{15} + {15}$ or ${15} + {15}$	2		
			• ² answer	• ² $3\frac{2}{15}$ or $\frac{47}{15}$			
1.	 Notes: 1. Correct answer without working award 0/2 2. Do not penalise incorrect conversion of ⁴⁷/₁₅ to a mixed number 						
Com	Commonly Observed Responses:						

Question		n	Generic scheme	Illustrative scheme	Max mark
2.	• ¹ start expansion		• ¹ start expansion	• $3x^2 - 3x + x - 1$ or $2x^2 - 10$	3
			• ² complete expansion	• ² $3x^2 - 3x + x - 1 + 2x^2 - 10$	
			• ³ collect like terms (see Note 2)	$a^{3} 5x^{2} - 2x - 11$	
Note 1.	-	rect a	nswer without working award 3/3		
2.	pov (a)	vers o $3x^3$ –	the expression to be simplified must in f x eg $-3x+x-1+2x^2-10=3x^3+2x^2-2x-1x^2-10+1(x-1)+2(x^2-5)=3x-3+x-1+2x^2-10+1(x-1)+2(x^2-5)=3x-3+x-1+2x^2-10+1(x-1)+1(x-1)+2(x^2-5)=3x-3+x-1+2x^2-10+1(x-1)+1(x-$	award 2/3 √×√	
	(c)	3 <i>x</i> ² +	$-1-1+2x^{2}-10=5x^{2}-10$	award 1/3 √××	
3.	For	subse	quent incorrect working, the final mar	k is not available	
Com	monly	Obse	erved Responses:		

Q	uestion	Generic scheme	Illustrative scheme	Max mark
3.		• ¹ evidence of scaling (match <i>x</i> or <i>y</i> coefficients)	• 1 eg $\frac{8x + 10y = -6}{30x - 10y = 25}$	3
		• ² follow a valid strategy through to produce values for x and y	• ² values for x and y	
		• ³ calculate correct values for x and y	• $x = 0.5, y = -1$	
	. Correct a	· · · · · · · · · · · · · · · · · · ·	ard 0/3 ard 0/3	
Com	monly Obse	erved Responses:		

Q	uestion	Generic scheme	Illustrative scheme	Max mark
4.		• ¹ evidence of subtraction	$\bullet^{1} \operatorname{eg} \begin{pmatrix} 6 \\ -4 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$	2
		• ² all components correct	$\bullet^2 \begin{pmatrix} 5\\ -9\\ 2 \end{pmatrix}$	
Note		nswer without working award 2/2		
2.	(a) brack	mum mark available is 1/2 where ets are omitted from the final answer answer is given in coordinate form		
2	(_)	ne correct component for evidence of s r $\begin{pmatrix} -9 \\ 2 \end{pmatrix}$ or $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ award 1/2 \checkmark ×	subtraction	
Com	monly Obse	erved Responses:		
1.	(a) $\begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$	$+\begin{pmatrix}5\\-9\\2\end{pmatrix}=\begin{pmatrix}6\\-4\\3\end{pmatrix}$	award 2/2	
	(b) $\begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$	$+\begin{pmatrix}5\\-9\\2\end{pmatrix}=\begin{pmatrix}6\\-4\\3\end{pmatrix} \rightarrow \mathbf{v}=\begin{pmatrix}6\\-4\\3\end{pmatrix}$	award 1/2	
2.	(-5 9 -2)	$\begin{bmatrix} u - (u + v) \end{bmatrix}$ no working necessary	award 1/2 ×√	
3.	$\begin{pmatrix} 7\\1\\4 \end{pmatrix}$	$\left[u + (u + v) ight]$ no working necessary	award 1/2 ×√	
4.	(5,-9	,2) or 5,-9,2	award 1/2 √×	

Question		Generic scheme	Illustrative scheme	Max mark
5.		• ¹ correct factorisation	• $(x-3)(x-8)$	2
		• ² solve for x	• $(x-3)(x-8)$ • $(x=)3, (x=)8$	
Note 1.		nswer without working award 0/2		
2.	For an an	swer obtained by guess and check awa	rd 0/2	
	and not	available if 3,8 are clearly stated as so t as factors of 24 adratic formula is used award marks as		
		erved Responses: $8) \rightarrow 3.8$ award 0/2		
		$-6) \rightarrow -4,6$ award $1/2 \times $		

Question		Generic scheme		Illustrative scheme	Max mark
6.		•1 state the value of a		• ¹ <i>a</i> = 5	2
		• ² state the value of b		• ² $b = 4$	
Note	s:				
Com	manly Ohe	anvad Docnoncost			
	(a) $y=5$	erved Responses:	award 2/2		
	(b) 5,4		award 1/2		
2.	(a) <i>a</i> = 4	$b = 5$ or $y = 4\cos 5x$	award 1/2		
	(b) 4,5		award 0/2		
3.	(a) $y = 5$	$\cos 2x$	award 1/2		
	(b) 5,2		award 0/2		

Q	Question		Generic scheme	Illustrative scheme	Max mark
7.	(a)		Method 1: $y-b=m(x-a)$	Method 1	3
			•1 calculate gradient	• $\frac{6}{4}$ or equivalent	
			• ² substitute gradient and a point into $y-b=m(x-a)$	• ² eg $y-20 = \frac{6}{4}(x-12)$	
			• ³ state equation in simplest form in terms of P and d	• ³ $P = \frac{3}{2}d + 2$ or equivalent	
			Method 2: $y = mx + c$	Method 2	
			• ¹ calculate gradient	• $\frac{6}{4}$ or equivalent	
			• ² substitute gradient and a point into $y = mx + c$	• 2 eg $20 = \frac{6}{4} \times 12 + c$	
			• ³ state equation in simplest form in terms of P and d	• ³ $P = \frac{3}{2}d + 2$ or equivalent	

Question	Generic scheme	Illustrative scheme	Max mark					
Notes: 1. Correct a	nswer without working award 0/3							
2. Gradient need not be simplified for the award of \bullet^2								
3. Where $\frac{6}{4}$	3. Where $\frac{6}{4}$ is simplified incorrectly \bullet^2 is still available							
	$=\frac{6}{4}=\frac{2}{3} \rightarrow y-20=\frac{2}{3}(x-12) \rightarrow P=\frac{2}{3}d$							
4. • ³ is not a	available where the calculated gradient	is an integer						
5. • ³ is not a	available where a decimal approximati	on is used for the gradient						
eg m=	$=\frac{4}{6}=0.67 \rightarrow y-20=0.67(x-12) \rightarrow P$	$= 0.67d + 11.96$ award $1/3 \times \checkmark \times$						
	available for invalid subsequent working	5						
eg P=	$=\frac{3}{2}d+2 \rightarrow 2P=3d+2$	award 2/3 √√×						
	erved Responses:							
Working must b								
1. $y = \frac{3}{2}x + $	2	award 2/3 √√×						
2. (a) $P = \frac{3}{2}a$	$d + 2 \rightarrow 2P = 3d + 4$	award 3/3						
(b) $P = \frac{6}{4}$	$d + 2 \rightarrow 4P = 6d + 8$	award 2/3 √√×						
3. $m = \frac{6}{4} = 0$	$0.67 \rightarrow y - 20 = 0.67(x - 12) \rightarrow P = 0.67$	$7d + 11.96$ award $2/3 \checkmark \checkmark \times$						
4. $m = \frac{6}{4} = \frac{2}{2}$	$\frac{3}{4} = 0.75 \rightarrow y - 20 = 0.75(x - 12) \rightarrow P =$	$0.75d + 11$ award $2/3 \checkmark \checkmark \times$						
5. $m = \frac{4}{6} = \frac{2}{3}$	$\frac{2}{3} \to y - 20 = \frac{2}{3}(x - 12) \to P = \frac{2}{3}d + 12$	award 2/3 × 🗸 🗸						
6. $m = \frac{3}{4} = 0$	$0.75 \rightarrow y - 20 = 0.75(x - 12) \rightarrow P = 0.75$	$d + 11$ award 2/3 × $\checkmark \checkmark$						

Q	Question		Generic scheme	Illustrative scheme	Max mark			
	(b)		•1 calculate cost	• ¹ (£) 9.50	1			
1.	Notes: 1. Correct answer without working award 1/1 2. Do not penalise omission of £							
3.	Do no	ot acc	ept 9.5 or $\frac{19}{2}$					
4.	4. Follow through mark from part (a) is only available if 5 is multiplied or divided by a non-unitary fraction (or decimal equivalent) followed by an addition or subtraction							
Com	Commonly Observed Responses:							

Question		ı	Generic scheme	Illustrative scheme	Max mark	
8.			•1 find discriminant	•1 –24	2	
			• ² state nature of roots	• ² no real roots		
Note 1.	-	ct ans	swer without working award 0/2			
2.	. 16-40	0 < 0	ightarrow no real roots, award 2/2			
3.	. Do no t	t acc	ept 'no roots', 'no real (or) distinct roo	ots', 'no real (and) distinct roots'		
4.	 4. Expected answer(s) for the award of •², when (a) b² - 4ac > 0: 'two real (and) distinct roots' (b) b² - 4ac = 0: 'one repeated real root' or 'two equal real roots' 					
1. —	$\frac{4\pm\sqrt{16}}{4}$	-40	Prved Responses: $\frac{-4 \pm \sqrt{-24}}{4} \text{award } 1/2 \checkmark \times$ $\frac{-24}{4} \text{award } 1/2 \checkmark \times$			

Q	Question		Generic scheme	Illustrative scheme	Max mark		
9.			• ¹ calculate the size of an interior angle of the decagon or angle JKL	• ¹ interior angle = 72+72 or JKL = 36	2		
			• ² calculate the size of angle KJL	• ² 127			
Notes: 1. Correct answer without working award 2/2							
2.	2. Degree signs are not required						

- 3. Full marks may be awarded for information marked on the diagram
- 4. For a final answer of 36 which is not named or shown at JKL award 0/2
- 5. Where JKL has been calculated incorrectly •² is only available where there is **clear evidence** that JKL has been calculated by using the interior angle or exterior angle of the decagon

Commonly Observed Responses:

Q	uestion	Generic scheme	Illustrative scheme	Max mark
10.		• ¹ correct substitution into cosine rule	• $10^{2} + 8^{2} - 2 \times 10 \times 8 \times \frac{1}{8}$	3
		•² calculate XY²	• ² 144	
		• ³ calculate XY	• ³ 12 (cm)	
2.	Correct an For $10^2 + 8$ where cos • ³ is availa (a) expre eg $\sqrt{2}$ [• ³ is no (b) calcu	swer without working award 0/3 $8^2 - 2 \times 10 \times 8 \times \cos \frac{1}{8} = 164 - 160 \times \cos \frac{1}{8}$ is scored out in each line of working a ble for essing \sqrt{x} as a surd in its simplest form $10^2 + 8^2 = \sqrt{164} = 2\sqrt{41}$ award 1/3 ot available where \sqrt{x} cannot be simpled lating \sqrt{x} where x is a perfect square gr $10^2 - 8^2 = \sqrt{36} = 6$ award 0/3	ward 3/3 ××√ .ified]	
1.	$10^2 + 8^2 - 2$	erved Responses: $2 \times 10 \times 8 \times \cos \frac{1}{8} = 12$ award 2/3 $2 \times 10 \times 8 \times \cos \frac{1}{8}$ award 0/3	×√√	

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark	
11.			 ¹ express as equivalent fraction with rational denominator 	• $1 \frac{9\sqrt{6}}{6}$	2	
			• ² express in simplest form	$\bullet^2 \frac{3\sqrt{6}}{2}$		
Note	-	ect an	swer without working award 0/2			
2. Accept 1.5√6						
3.	3. For subsequent incorrect working, the final mark is not available					

eg
$$\frac{9\sqrt{6}}{6} = \frac{3\sqrt{6}}{2} = 3\sqrt{3}$$
 award $1/2 \checkmark \times$

Commonly Observed Responses:

Question		า	Generic scheme	Illustrative scheme	Max mark			
12.			•1 state value	• ¹ -0·5	1			
Notes:								
Com	Commonly Observed Responses:							

Q	uestion	Generic scheme	Illustrative scheme	Max mark
13.		• ¹ state coordinates of B	• ¹ (4, 8, 5) • ² (6, 8, 0)	2
		• ² state coordinates of C	• ² (6, 8, 0)	
2.	. The maxim (a) bracket (b) answer . (a) For (4, (b) For C(4 . For eg (5, 4	num mark available is 1/2 where ts are omitted (unless already penalis s are given in component form (unless 8, 5) and (6, 8, 0) award 2/2 4, 8, 5) and B(6, 8, 0) award 1/2 4, 8) and (0, 6, 8) [repeated error] aw ble for answers of the form $B(x, y, z)$	s already penalised in Q4) ard 1/2	
	eg (2, 8, 5) and (4, 8, 0)		
	. 4,8,5 and	•		
2.		$\begin{pmatrix} 6\\8\\0 \end{pmatrix} = \begin{pmatrix} 4 & 6\\8\\0 \end{pmatrix} = 5 & 0 \\ \end{pmatrix}$ (2 if use of coordinates instead of com		Q4)
3.	$\begin{pmatrix} 5\\8\\4 \end{pmatrix}$ and	(I)	- · ·	

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
14.		• ¹ subtract <i>h</i>	• ¹ $y-h=g\sqrt{x}$	3		
		• ² divide by g	• ¹ $y-h = g\sqrt{x}$ • ² $\sqrt{x} = \frac{y-h}{g}$ • ³ $x = \left(\frac{y-h}{g}\right)^2$			
		• ³ square	• ³ $x = \left(\frac{y-h}{g}\right)^2$			
Note 1.	-	swer without working award 1/3				
2.	. For subsec	juent incorrect working, the final mark	is not available			
	monly Obse king must b	erved Responses: be shown.				
	1. $x = \left(\frac{y}{g} - \frac{h}{g}\right)^2$ award 3/3					
2.	2. $x = \frac{y-h}{g}^2$ award 2/3 $\checkmark \checkmark \times$					

Question		Generic scheme	Illustrative scheme	Max mark			
		•1 start process	•1 $\frac{4}{9}$ or p^8	2			
		• ² complete process	$\cdot^{2} \frac{4}{9} p^{8}$				
s: For a	corre	ect answer without working award 2/2					
. For s	ubseq	uent incorrect working, the final mark	is not available				
. BEW	ARE :	For $\frac{2}{3}p^4 + \frac{2}{3}p^4 = \frac{4}{3}p^8$ award 0/2					
. Awar	d ∙¹ f	or an incorrect expansion leading to $\frac{4}{9}$	+ or + p^{8}				
$\operatorname{eg}\left(\frac{2}{3}p^{4}\right)\left(\frac{2}{3}p^{4}\right) = \frac{4}{9} + \frac{2}{3}p^{4} + \frac{2}{3}p^{4} + p^{8} = \frac{4}{9} + \frac{4}{3}p^{4} + p^{8} \text{award } 1/2 \checkmark \times$							
Commonly Observed Responses:							
•	For a For s BEW	For a correct For subseq BEWARE : Award \cdot^1 f eg $\left(\frac{2}{3}p^4\right)$	• ² complete process • ² complete process • ³ : • For a correct answer without working award 2/2 • For subsequent incorrect working, the final mark • BEWARE : For $\frac{2}{3}p^4 + \frac{2}{3}p^4 = \frac{4}{3}p^8$ award 0/2 • Award • ¹ for an incorrect expansion leading to $\frac{4}{9}$ eg $\left(\frac{2}{3}p^4\right)\left(\frac{2}{3}p^4\right) = \frac{4}{9} + \frac{2}{3}p^4 + \frac{2}{3}p^4 + p^8 = \frac{4}{9} + \frac{4}{3}p^4$	$e^{2} \text{ complete process}$ $e^{2} \frac{4}{9}p^{8}$ $e^{2} \frac{2}{3}p^{4} + \frac{2}{3}p^{4} = \frac{4}{3}p^{8} \text{ award } \frac{2}{2}$ $e^{2} \frac{2}{3}p^{4} + \frac{2}{3}p^{4} + \frac{2}{3}p^{8} \text{ award } \frac{2}{2}$ $e^{2} \frac{2}{3}p^{4} + \frac{2}{3}p^{4} + \frac{2}{3}p^{8} \text{ award } \frac{2}{2}$ $e^{2} \frac{2}{3}p^{4} + \frac{2}{3}p^{4$			

Question		Generic scheme	Illustrative scheme	Max mark
16.		• ¹ identify roots	• ¹ -4 AND 6	3
		• ² identify turning point OR <i>y</i> -intercept	● ² (1, -25) OR -24	
		• ³ identify the turning point AND the y-intercept and sketch a consistently annotated parabola	• ³ (1, -25) AND -24 and consistently annotated parabola (see Note 1).	
			-4 0 6 x -24 (1,-25)	
Note 1.	\bullet^3 is only a	vailable where the roots, turning point y annotated on the sketch	AND <i>y</i> -intercept are clearly marked a	ind
2.		rectly calculated roots and/or y-interce evidence for the award of \bullet^3 (treat as		
3.		ailable if graph is not a parabola -6and4 \rightarrow (-1,-21) or -24 award 1.	/3 ×√×	
Com	monly Obse	erved Responses:		

Q	uestion	Generic scheme	Illustrative scheme	Max mark
17.		Method 1	Method 1	3
		• ¹ start substitution into formula	• $\frac{1}{3} \times 6^2 \times h$ or $\frac{1}{3}Ah = 138$	
		• ² complete substitution into formula	$\bullet^2 \frac{1}{3} \times 6^2 \times h = 138$	
		• ³ calculate height	• ³ 11·5 (cm)	
		Method 2	Method 2	
		• ¹ change subject to h	• $\frac{3V}{A}$ or $\frac{V}{\frac{1}{3}A}$	
		• ² correct substitution into formula	• ² $\frac{3 \times 138}{6 \times 6}$ or $\frac{138}{\frac{1}{3} \times 6 \times 6}$	
		• ³ calculate height	• ³ 11·5 (cm)	

Question	Generic scheme		Illustrative scheme	Max mark
Notes: 1. For a corre	ect answer without working award	0/3		
2. For an ans	wer obtained by guess and check a	ward 0/3		
3. Accept $\frac{23}{2}$	$\frac{3}{2}$ or $11\frac{1}{2}$			
4. For subseq eg $\frac{23}{2} = 11$	uent incorrect working, the final n	nark is not av	vailable	
5. Calculation	n must involve division by a numbe	r greater tha	in 10 for the award of \bullet^3	
Commonly Obse Working must b	erved Responses: e shown.			
1. (a) $\frac{1}{3} \times 6^2 \times$	$h = 138 \rightarrow \frac{1}{3} \times 12 \times h = 138 \rightarrow 4h = 1$	$38 \rightarrow h = 34$	~ 5 award 2/3 $\checkmark \checkmark \times$	
(b) $\frac{1}{3} \times 12 \times$	$h = 138 \rightarrow 4h = 138 \rightarrow h = 34.5$		award 1/3 √××	
2. $\frac{1}{3} \times 18 \times$	$h = 138 \rightarrow 6h = 138 \rightarrow h = 23$	$[A = \frac{1}{2} \times 6^2]$	award 1/3 √××	
3. $\frac{1}{3} \times 24 \times$	$h = 138 \rightarrow 8h = 138 \rightarrow h = 17.25$	[<i>A</i> = 4 × 6]	award 1/3 √××	
4. (a) $V = \frac{1}{3}$	$Ah \rightarrow \frac{1}{3} \times 6 \times h = 138 \rightarrow 2h = 138 \rightarrow h$	h=69	award 1/3 √××	
(b) $h = \frac{3V}{A}$	$h \to h = \frac{3 \times 138}{6} \to h = 69$		award 1/3 √××	
(c) $\frac{1}{3} \times 6 \times 1$	$h = 138 \rightarrow 2h = 138 \rightarrow h = 69$		award 0/3	

Q	Question		Gene	ric scheme		Illustrative scheme	Max mark
18.			• ¹ correct subst	titution for $\tan x$		•1 $\sin x \cos x \frac{\sin x}{\cos x}$	2
			• ² express in sir	nplest form		• ² $\sin^2 x$	
Note							
1.	For si	$\sin^2 x$	without working	award 0/2			
2.	Degre	e sigr	ns are not require	ed			
3.	Accep	ot (si	$(x, x)^2$ but not sin	x^2			
4.	• 1 is r	not av	vailable if there a	are no variables			
	eg sir		$\frac{\sin}{\cos} = \sin^2$		awa	ard 1/2 ×√	
5.	. ∙ ¹ is r	not av	vailable if candid	late simply states	s tan.	$x = \frac{\sin x}{\cos x}$ then proceeds no further	
6.	• ² is r	not av	vailable if there i	is invalid subsequ	uent v	vorking	
	eg (a)	sin	$x\cos x \frac{\sin x}{\cos x} = \sin x$	$n^2 x = 1 - \cos x$	awa	ard 1/2 ✓×	
	(b)	sin	$x\cos x \frac{\sin x}{\cos x} = \sin x$	$x^2 x = 1 - \cos^2 x$	awa	ard 2/2	
7.	Alterr	native	acceptable stra	tegy:			
	• $1\left(\frac{a}{h}\right)$	$\left(\frac{a}{h}\right) \left(\frac{a}{h}\right)$	$\left(\frac{o}{a}\right)$				
	• ² $\frac{o^2}{h^2}$	- = sir	$n^2 x$		awa	ard 2/2	
Com	monly	Obse	rved Responses	:			
1.	$\sin x$		$\frac{\sin x}{\cos x} = \sin x^2$	award 1/2 √×			
2.	$1 \times \frac{\sin}{\cos}$	$\frac{\mathrm{n}x}{\mathrm{s}x} =$	tan x	award 1/2 √×			
3.	$\sin x$		$\frac{\cos x}{\sin x} = \cos^2 x$	award 1/2 $\times \checkmark$			

Q	Question		Generic schem		ax ark
19.	(a)	(i)	• ¹ correct bracket with sq	hare \bullet^1 $(x-3)^2$	2
			• ² complete process	hare $\bullet^1 (x-3)^2 \dots$ $\bullet^2 (x-3)^2 - 90$	
Note		rect a	nswer without working awa	d 2/2	
2	. If th	ie soli	tion to (a)(i) only appears	n (a)(ii) then both marks are available	
	-		rved Responses: essary:		
	Awar	-			
2.	Awar	[.] d 1/2	×√ for (a) $(x-3)-90$ (b) $(x^2-3)-90$ (c) $(x^2-3)^2-90$ (d) $(x-3x)^2-90$ (e) $(x-6)^2-117$		
3.	(a) ($(x-6)^2$	–117 award 1/2 ×√		
	(b) ($(x-6)^2$	-90 award 0/2		
		(ii)	• ¹ state equation of axis of symmetry		1
Note	- •	2			
			axis of symmetry $= 3$ awar		
	. AIIS			ver to 19(a)(i) [unless no answer given to 19(a)(i)]	
Com	monly	v Obse	rved Responses:		

Q	uestio	n Generic scheme	Illustrative scheme	Max mark			
19.	(b)	Ans: <i>d</i> = 3, <i>e</i> = 10		4			
		Method 1	Method 1				
		• ¹ equate complete square form to zero	• $(x-3)^2 - 90 = 0$				
		• ² start to solve	• ² $x-3 = \pm \sqrt{90}$ • ³ $x = 3 \pm \sqrt{90}$				
		• ³ solve equation	$\bullet^3 x = 3 \pm \sqrt{90}$				
		● ⁴ complete process	•4 $d = 3, e = 10 \text{ or } 3 \pm 3\sqrt{10}$				
		Method 2	Method 2				
		 ¹ correct substitution into quadratic formula 	$\bullet^{1} \frac{6 \pm \sqrt{\left(-6\right)^{2} - 4 \times 1 \times \left(-81\right)}}{2 \times 1}$				
		• ² evaluate discriminant	• ² 360 (stated or implied by • ³)				
		• ³ express discriminant in simplest form	• ³ 6√10				
		• ⁴ complete process	•4 $d = 3, e = 10 \text{ or } 3 \pm 3\sqrt{10}$				
Note		ct answer without working award 0/4					
			ble				
	2. Where a, b and c are all positive \bullet^2 is not available						
3.	3. Where $b^2 - 4ac$ is calculated incorrectly, \bullet^3 and \bullet^4 are only available if $b^2 - 4ac > 0$ (See CORs 2 - 5)						
4.	4. \bullet^4 is only available where a correct simplification of $\sqrt{discriminant}$ leads to a						
	final answer of the form $d\pm d\sqrt{e}$ (See COR 6)						

Commonly Observed Responses: Working must be shown.

F

1.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{360}}{2} \rightarrow \frac{6 \pm 3\sqrt{40}}{2} \rightarrow 3 \pm 1.5\sqrt{40} \qquad \text{award } 2/4 \checkmark \checkmark \times 10^{-10}$$

2.
$$\frac{6 \pm \sqrt{(-6)^2 - 4 \times 1 \times (-81)}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{-288}}{2} \rightarrow \frac{6 \pm 12\sqrt{2}}{2} \rightarrow 3 \pm 6\sqrt{2}$$
 award 1/4 $\checkmark \times \times \times$

(**BEWARE:** candidate may get $\sqrt{-288}$ then change it to $\sqrt{288}$)

3.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{288}}{2} \rightarrow \frac{6 \pm 12\sqrt{2}}{2} \rightarrow 3 \pm 6\sqrt{2} \qquad \text{award } 2/4 \checkmark \times \checkmark \times$$

4.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times 81}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{-288}}{2} \rightarrow \frac{6 \pm 12\sqrt{2}}{2} \rightarrow 3 \pm 6\sqrt{2} \qquad \text{award } 1/4 \times \sqrt{\times \times 81}$$

(BEWARE: candidate may get $\sqrt{-288}$ then change it to $\sqrt{288}$)

5.
$$\frac{-6 \pm \sqrt{6^2 - 4 \times 1 \times 81}}{2 \times 1} \rightarrow \frac{-6 \pm \sqrt{-288}}{2} \rightarrow \frac{-6 \pm 12\sqrt{2}}{2} \rightarrow -3 \pm 6\sqrt{2}$$
 award 0/4

(**BEWARE:** candidate may get
$$\sqrt{-288}$$
 then change it to $\sqrt{288}$)

6.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times 81}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{288}}{2} \rightarrow \frac{6 \pm 12\sqrt{2}}{2} \rightarrow 3 \pm 6\sqrt{2} \qquad \text{award } 1/4 \times 1 \times \sqrt{2}$$

7.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{288}}{2} \rightarrow \frac{6 \pm 6\sqrt{8}}{2} \rightarrow 3 \pm 3\sqrt{8} \qquad \text{award } 2/4 \checkmark \times \checkmark$$

8.
$$6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)} \rightarrow 6 \pm \sqrt{360} \rightarrow 6 \pm 6\sqrt{10} \qquad \text{award } 2/4 \times \checkmark \checkmark$$

[END OF MARKING INSTRUCTIONS]

2018 Mathematics

National 5 - Paper 2

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2018

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

Detailed marking instructions for each question

Q	uestion	Generic scheme	Illustrative scheme	Max mark
1.		• ¹ know how to decrease by 2%	$\bullet^1 \times 0.98$	3
		• ² know how to calculate new total	• ² 125 000 \times 0.98 ³	
		• ³ carry out calculations correctly within a valid strategy	• ³ 117 649 (tonnes)	
Note 1	-	answer without working award 3/3		
2	possibil	an incorrect percentage is used, the work ity of awarding 2/3, with working $000 \times 0.02^3 = 1$, with working award 2/3		he
3	(a) alor	division is used ng with 0.98 , \bullet^1 is not available 125 000 ÷ $0.98^3 = 132810(.3)$ award 2/	2 v././	
	(b) alor	and $125\ 000\ \div\ 0.98\ = 1328\ 10(\cdot3)\ award\ 27$ and with an incorrect percentage, \bullet^1 and \bullet^2 125 000 $\div\ 1.02^3 = 117790(\cdot2)\ award\ 1/3$	are not available	
		served Responses: be shown:		
	-	$0 \times 1.02^3 = 132651$	award 2/3 × \checkmark \checkmark	
2	. 125 00	$0 \times 0.98 = 122500$	award 1/3 \checkmark × ×	
3	. 125 00	$0 \times 0.98 \times 3 = 367500$	award 1/3 \checkmark ××	
4	. 125 00	$0 \times 0.02 = 2500 \rightarrow 125000 - 3 \times 2500 = 117$	7500 award 1/3 √××	
5	. 125 00	$0 \times 0.02 \times 3 = 7500$	award 0/3	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
2.		Method 1 • ¹ appropriate fraction	Method 1 • $1 \frac{320}{360}$	3
		• ² correct substitution into arc length formula	$\bullet^2 \frac{320}{360} \times 2 \times \pi \times 7 \cdot 4$	
		• ³ calculate arc length	• ³ 41(·32) (cm)	
		Method 2	Method 2	
		• ¹ appropriate fraction	• $1 \frac{360}{320}$	
		• ² correct substitution into arc length formula	• ² $2 \times \pi \times 7 \cdot 4 \div \frac{360}{320}$	
		• ³ calculate arc length	• ³ 41(·32) (cm)	
	· · · ·	·		

Question	Generic scheme		Illustrative scheme	Max mark
Notes: 1. Correc	t answer without working awa	ard 0/3		
	penalise variations in π $\frac{0}{0} \times 2 \times 3 \cdot 14 \times 7 \cdot 4 = 41(\cdot 30)$	award 3/3		
eg (a)	$\frac{320}{360} \times 2 \times \pi \times 7 \cdot 4 = 0 \cdot 89 \times 2 \times \pi \times 7$	$<7\cdot4=41(\cdot3)$	award 3/3 41.8(46) award 2/3 $\checkmark\checkmark$	
4. Accept	$2 \times \pi \times 7 \cdot 4 - \frac{40}{360} \times 2 \times \pi \times 7 \cdot 4$	= 41 or 41(·	32) award 3/3	
	esequent incorrect working, the $\pi \times 7 \cdot 4 - \frac{320}{360} \times 2 \times \pi \times 7 \cdot 4 = 5$		k is not available award 2/3 √√×	
Commonly Ob Working must	served Responses: be shown:			
1. $\frac{320}{360} \times \pi$	\times 7 · 4 = 21 or 20 · 6(64)	award 2/3	\sqrt{x}	
$2. \frac{320}{360} \times \pi$	$\times 7 \cdot 4^2 = 153 \text{ or } 152 \cdot 9(18)$	award 2/3	$\checkmark \mathbf{x} \checkmark$	
3. $\frac{40}{360} \times 2$	$\times \pi \times 7 \cdot 4 = 5(\cdot 16)$	award 2/3	×√√	
$4. \frac{40}{360} \times \pi$	$\times 7 \cdot 4 = 3 \text{ or } 2 \cdot 6 \text{ or } 2 \cdot 5(83)$	award 1/3	××√	
5. $\frac{40}{360} \times \pi$	$\times 7 \cdot 4^2 = 19(\cdot 11)$	award 1/3	xx√	
6. 2×π×7	· 4 = 46(·49…)	award 0/3		

Question		n	Generic scheme	Illustrative scheme	Max mark		
3.			• ¹ start process	• ¹ $24^2 + (-12)^2 + 8^2$	2		
			• ² solution	• ² 28			
1.	Notes: 1. Correct answer without working award 2/2 2. Accept $24^2 + 12^2 + 8^2$ for the award of \bullet^1						
	3. For eg $\sqrt{24^2 + (-12)^2} = \sqrt{720} = 26 \cdot 8(3)$ or $12\sqrt{5}$ award $0/2$						
			erved Responses: essary:				
1.	√78	<u>4</u> o	r 784	award 1/2 √×			
2.	2. 22.2(7) or $4\sqrt{31} \left(\sqrt{24^2 - 12^2 + 8^2} = \sqrt{496}\right)$ award $1/2 \times \sqrt{31}$						
3.	√49	6		award 0/2			
4.	√20	$= 4 \cdot $	$4 \left(\sqrt{24 - 12 + 8}\right)$	award 0/2			

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
4.		• ¹ start to process right hand side	• 1 6 <i>x</i> -6-12	3		
		• ² collect like terms	• 2 -3 <i>x</i> < -18 or 18 < 3 <i>x</i>			
		• ³ solve for x	• $x > 6 \text{ or } 6 < x$			
	 Correct answer without valid working award 0/3 Treat guess and check as invalid working For subsequent incorrect working final mark is not available eg 6 < x → x < 6 award 2/3 					
Com	monly O	bserved Responses:				
	•	$x-6-12 \rightarrow 3x < -18 \rightarrow x < -6$	award 1/3 √××			
2	2. $3x < 6x - 1 - 12 \rightarrow -3x < -13 \rightarrow x > \frac{13}{3}$ award 2/3 × $\sqrt{}$					
3	. (a) 3 <i>x</i>	$=6x-6-12 \rightarrow -3x=-18 \rightarrow x=6 \rightarrow x$	>6 award 3/3			
	(b) 3 <i>x</i>	$= 6x - 6 - 12 \rightarrow -3x = -18 \rightarrow x = 6$	award 2/3 $\checkmark \checkmark \times$			

	Method 1 • ¹ calculate mean • ² calculate $(x-\overline{x})^2$ • ³ substitute into formula • ⁴ calculate standard deviation Method 2	Method 1 • ¹ 126 • ² 36, 0, 1, 25, 16, 4 • ³ $\sqrt{\frac{82}{5}}$ • ⁴ 4(.049) Method 2	4
	• ² calculate $(x - \overline{x})^2$ • ³ substitute into formula • ⁴ calculate standard deviation	• ² 36, 0, 1, 25, 16, 4 • ³ $\sqrt{\frac{82}{5}}$ • ⁴ 4(·049)	
	 ³ substitute into formula ⁴ calculate standard deviation 	• $\sqrt[3]{\frac{82}{5}}$ • 4 4(·049)	
	• ⁴ calculate standard deviation	• ⁴ 4(·049)	
	Method 2	Method 2	
	• ¹ calculate mean	• ¹ 126	
	• ² calculate $\sum x$ and $\sum x^2$	• ² 756, 95338	
	• ³ substitute into formula	• $\sqrt[3]{\frac{95338-\frac{756^2}{6}}{5}}$	
	• ⁴ calculate standard deviation	• ⁴ 4(·049)	
• •	-		
(a) For 12	6 and $\frac{\sqrt{82}}{5} = 4(.049)$ award 4/4		
(b) For 12	26 and $\frac{\sqrt{82}}{5} = 1(.811)$ award 3/4 v	/√x√	
	Accept (s (a) For 12 (b) For 12	• ⁴ calculate standard deviation For 126 and 4(·04) without working award 1/4 Accept (standard deviation =) 4·04 with working (a) For 126 and $\frac{\sqrt{82}}{5} = 4(\cdot049)$ award 4/4	For 126 and 4(·04) without working award 1/4 \checkmark ××× Accept (standard deviation =) 4·04 with working (a) For 126 and $\frac{\sqrt{82}}{5} = 4(\cdot049)$ award 4/4 (b) For 126 and $\frac{\sqrt{82}}{5} = 1(\cdot811)$ award 3/4 \checkmark ××

Q	Question		Generic scheme	Illustrative scheme	Max mark
5.	(b)		• ¹ compare means	 ¹ eg on average the number of customers was higher on Saturday 	2
			• ² compare standard deviations	 ² eg the number of customers was less varied on Saturday 	
Note 1		wers	must be consistent with answers to par	t (a)	
 2. Statements must involve (a) reference to number of customers and a chronological comparison or reference to Saturday and/or Sunday Accept eg 'there were more customers on Saturday' 'on average the number of customers decreased' Do not accept eg 'there were more visits on Saturday', 'the customers were more consistent on Saturday' 'on average the number of customers was more' 					
3	(a) (b)	eg Ac • Satu • The eg Do • The • The	ward of • ¹ cept urday's average number of customers w amount of people was higher on Sature not accept mean number of customers on Saturda re were more customers at each stall of average number of people visiting the	day ny was more on Saturday	
4	(a) (b)	eg Ac • The • The • Satu eg Do • The • The • The • On a	ward of • ² cept spread of customer numbers on Saturd number of customers on Saturday was urday's customer numbers were less va not accept standard deviation on Saturday was le range of customer numbers on Saturda customers on Saturday were less varie average the number of customers on Sa standard deviation is more consistent	more consistent ried ss ay was less d	
Com	monly	v Obse	erved Responses:		

Question		on	Generic scheme	Illustrative scheme	Max mark		
6.			• ¹ valid strategy	• ¹ 5+4 a = 73 or 5+4×17	2		
			\bullet^2 state value of a	• ² (<i>a</i> =)17			
-	Notes: 1. Correct answer without working award 2/2						
2	. Acc	ept f	f(17) = 73 without working award 2/2				
3	3. Accept use of x in place of a						
Com	monly	0bse	erved Responses:				
1	. 5+	4×73	=297	award 0/2			
2	. 5+	4 <i>a</i> = 7	73 or $5+4\times17 \rightarrow a=17 \rightarrow f(a)=17$	award 2/2			
3	. 5+	4a = 2	73 or $5+4\times17 \rightarrow f(a)=17$	award 1/2 √×			
4	. f(73) = 5	$b + 4x \rightarrow x = 17$	award 2/2			

Question		n	Generic scheme	Illustrative scheme	Max mark	
7.			• ¹ substitute into formula	$\bullet^1 \frac{4}{3} \times \pi \times 3 \cdot 2^3$	3	
			• ² calculate volume	• ² 137 · 2		
			• ³ round to 2 significant figures	• 3 140(cm ³)		
1	Notes: 1. Correct answer without working award 0/3 2. Accept variations in π eg $\frac{4}{3} \times 3 \cdot 14 \times 3 \cdot 2^3 = 137 \cdot 188 = 140$					
Com	monly	Obse	rved Responses:			
1	$\cdot \frac{4}{3} \times$	$\pi \times 6$	$4^3 = 1098 \cdot 0 = 1100$ award 2/	3 ×√√		
2	$\cdot \frac{4}{3} \times$	$\pi \times 3$.	$2^2 = 42 \cdot 8 = 43$ award 2/	3 ×√√		
3	$\cdot \frac{4}{3} \times$	$\pi \times 3$.	$2^3 = 42 \cdot 8 = 43$ award 2/	3 √×√		
4	$\cdot \frac{4}{3} \times$	π×3·	2=13·4=13 award 1/	3 ××√		

Question		Generic scheme	Illustrative scheme	Max mark		
8.		• ¹ rearrange equation	• ¹ sin $x = \frac{1}{7}$	3		
		• ² calculate value of x	• ² 8·2(1)			
		• ³ calculate 2nd value of x	• ³ 171·8 or 171·7(8)			
Note 1	-	Inswers without working award 1/3 ××-	/			
2	. Accept 8	and 172 with valid working				
3	. Degree si	gns are not required				
4	. Prematur	e rounding: rounded working must be t	o at least 2 decimal places			
	eg (a) s	in $x = \frac{1}{7} = 0.14 \rightarrow x = 8(.04),172 \text{ or } 12$	71·(95) award 3/3			
		in $x = \frac{1}{7} = 0.1 \rightarrow x = 6$ or $5(.73), 174.($				
5	 5. Inappropriate use of RAD or GRAD should only be penalised once in Q8, Q9, Q13 or Q17 (a) 0.143,179.856 (RAD) (b) 9.125,170.874 (GRAD) 					
	-	erved Responses:				
1	$\sin x = \frac{5}{7}$	$x \rightarrow x = 45.6,134.4$ award 2/3	(√√			
2	. (a) $\sin x =$	$=-\frac{1}{7} \rightarrow x = 188 \cdot 2,351 \cdot 8$ award 2/3	<√√			
	(b) sin <i>x</i> =	$= -\frac{1}{7} \rightarrow x = 8 \cdot 2,171 \cdot 8 \qquad \text{award } 0/3$				

Question		n	Generic scheme	Illustrative scheme	Max mark		
9.			• ¹ correct substitution into sine rule	$\bullet^1 \frac{20}{\sin 37} = \frac{\text{DC}}{\sin 105}$	3		
			• ² re-arrange formula	$\bullet^2 \frac{20\sin 105}{\sin 37}$			
			• ³ calculate length	• ³ 32(·1 cm)			
	Notes: 1. Correct answer without working award 0/3						
2	. Deg	ree si	gns are not required				
3	. BEV	VARE	$\frac{20}{\sin 37} = \frac{\text{DC}}{\sin 75} \rightarrow 32(.1) \text{ award } 2/$	3 ×√√			
4	. Disr	egard	l errors due to premature rounding pro	ovided there is evidence			
5	 5. Inappropriate use of RAD or GRAD should only be penalised once in Q8, Q9, Q13 or Q17 (a) 30(·16) (RAD) (b) 36(·31) (GRAD) 						
Com	monly	Obse	erved Responses:				
1	1. $\frac{20}{\sin 37} = \frac{?}{\sin 38} \rightarrow \frac{20 \sin 38}{\sin 37} = 20(.46)$ award 2/3 × $\checkmark \checkmark$						
2	$\frac{20}{37}$	$=\frac{DC}{105}$	\rightarrow 57 or 56(·7) aware	10/3			

Q	uestion	Generic scheme	Illustrative scheme	Max mark
10.		• ¹ express \overrightarrow{ED} in terms of u and \overrightarrow{DC} in terms of w	• ¹ $\overrightarrow{ED} = 2\mathbf{u}$ and $\overrightarrow{DC} = \frac{1}{2}\mathbf{w}$	2
		• ² express \overrightarrow{BC} in terms of u and w in simplest form	$\bullet^2 \mathbf{u} - \frac{1}{2}\mathbf{w}$	
Note				
1.	Correct	answer without working award 2/2		
2.	Accept	$\mathbf{u} + -\frac{1}{2}\mathbf{w}$ award 2/2		
3.	Evidence	e for the award of $ullet^1$ may appear on the	diagram	
4.		award of \bullet^1 accept		
	(a) — u —	$\mathbf{w} + 2\mathbf{u} + \frac{1}{2}\mathbf{w}$		
		$\mathbf{w} + 2\overrightarrow{AB} + \frac{1}{2}\overrightarrow{EA}$		
5.	$\overrightarrow{BA} + \overrightarrow{AE}$	$+\overrightarrow{ED}+\overrightarrow{DC}$ alone is not enough for the aw	ard of \bullet^1	
6.	For -u	$-\frac{1}{2}\mathbf{w}$ (a) without working award 0/2		
		(b) but may be worth 1/2 if the	re is valid working	
Com	monlv Oh	served Responses:		

Qu	uestion	Generic scheme	Illustrative scheme	Max mark		
11.		• 1 know that $85\% = 9 \cdot 3 \times 10^{11}$	• $85\% = 9 \cdot 3 \times 10^{11}$	3		
		• ² begin valid strategy	• ² 1% = $\frac{9 \cdot 3 \times 10^{11}}{85}$			
		• ³ complete calculation within valid strategy	• ³ 1.094×10 ¹² (km ³) or 1094117647000 (km ³)			
Notes	-					
1.		valid working award 3/3 ut working award 0/3				
2.	2. BEWARE 115% of $9 \cdot 3 \times 10^{11} = 1 \cdot 1 \times 10^{12}$ or $1 \cdot 06 \times 10^{12}$ (a) and evidence of \bullet^1 award $1/3 \checkmark \times \times$ (b) otherwise award $0/3$					
3.		$3 \times 10^{11} = 7 \cdot 9(05) \times 10^{11}$ vidence of \bullet^1 award 1/3 $\checkmark \times \times$ wise award 0/3				
4.	Do not ac	cept eg 10.94×10^{11} for the award of	•3			
Comn	nonly Obse	rved Responses:				
	•	$r = 1.094 \times 10^{12}$	award 3/3			
2.	115% = 9·	$3 \times 10^{11} \rightarrow \frac{9 \cdot 3 \times 10^{11}}{1 \cdot 15} = 8 \cdot 086 \times 10^{11}$	award 2/3 ×√√			
3.	15% = 9·3	$3 \times 10^{11} \rightarrow \frac{9 \cdot 3 \times 10^{11}}{0.15} = 6 \cdot 2 \times 10^{12}$	award 2/3 ×√√			

Question		Generic scheme	Illustrative scheme	Max mark
12.		 Method 1 ¹ marshal facts and recognise right angled triangle 	• 1 A 10 10	4
		• ² consistent Pythagoras statement	• $^{2} x^{2} = 13^{2} - 10^{2}$	
		• ³ calculate x	• 3 8 · 3()	
		• ⁴ calculate width	• ⁴ 21·3(cm)	
		 Method 2 ¹ marshal facts and recognise right angled triangle 	• 1 26 20 B	
		• ² consistent Pythagoras statement	• $^{2} x^{2} = 26^{2} - 20^{2}$	
		• ³ calculate x	• ³ 16·6()	
		• ⁴ calculate width	• ⁴ 21·3(cm)	

Question	Generic scheme	Illustrative scheme	Max mark				
Notes:	and which are the relation of the observed O / 4						
1. Correct	Correct answer without working award 0/4						
 In the all of ●¹ and 	osence of a diagram accept $x^2 = 13^2 - 10^2$	x^2 or $x^2 = 26^2 - 20^2$ as evidence for the	award				
	E diagram is shown, working must be cor available for an <u>incorrect</u> diagram leac	-					
4. ● ² is ava	\bullet^2 is available for a valid trig. method						
	candidate assumes the sizes of one or , only \bullet^1 and \bullet^4 are available	both of the smaller angles in the right-	angled				
	v available following a Pythagoras (or tri g 13 and 10 or 26 and 20	g.) calculation within a right-angled tri	iangle				
7. Disregar	d errors due to premature rounding pro	vided there is evidence					
Commonly Obs	erved Responses:						
1. $x^2 = 13^2$	$+10^2 \rightarrow x = 16 \cdot 4$; width = 29 \cdot 4						
	ing inconsistent with correct diagram	award 3/4 $\checkmark \times \checkmark \checkmark$					
. ,	ing consistent with candidate's diagram ne rule may be used to calculate x)	award $3/4 \times \sqrt{\sqrt{2}}$					
(c) no d	· · · · · · · · · · · · · · · · · · ·	award 2/4 ××√√					
2. $x^2 = 26^2$	$+20^2 \rightarrow x = 32 \cdot 8$; width = 29.4						
(a) work	ing inconsistent with correct diagram	award $3/4 \checkmark \times \checkmark \checkmark$					
	ing consistent with candidate's diagram	award $3/4 \times \sqrt{\sqrt{2}}$					
(c) no d	ne rule may be used to calculate X) iagram	award 2/4 ××√√					
3. $x^2 = 20^2$	$-13^2 \rightarrow x = 15 \cdot 2$; width = 28 \cdot 2						
()	ting consistent with candidate's diagram ne rule may be used to calculate ${\cal X}$)	award 2/4 $\times \sqrt{4}$					
(b) no d		award 1/4 ××√×					
L							

Q	Question		Generic scheme	Illustrative scheme	Max mark
13.			• ¹ correct substitution into cosine rule	$\bullet^1 \frac{10 \cdot 3^2 + 5 \cdot 6^2 - 7 \cdot 2^2}{2 \times 10 \cdot 3 \times 5 \cdot 6}$	4
			\bullet^2 correct calculation of $\cos YTF$	• ² $\frac{85 \cdot 61}{115 \cdot 36} (= 0 \cdot 742)$	
			• ³ calculate angle YTF	• ³ 42(·088)	
			• ⁴ calculate bearing	• ⁴ 282(·088)	

Question	Generic scheme	Illustrative scheme	Max mark
Notes: 1. Correc	t answer without working award 0/4		
	psequent invalid working \bullet^4 is not available $2 \rightarrow 360 - 282 = 078$	le	
3. Degree	e signs are not required		
eviden	an incorrect angle has been calculated ce of an intention to calculate angle T $T = \frac{10 \cdot 3^2 + 7 \cdot 2^2 - 5 \cdot 6^2}{2 \times 10 \cdot 3 \times 7 \cdot 2} \text{ OR } T = 31 \text{ OR an}$	-	is clea
5. ● ⁴ can	only be awarded for adding 240 to a valu	e previously calculated using trig.	
6. Disrega	ard errors due to premature rounding pro	wided there is evidence	
(a) 24	opriate use of RAD or GRAD should only 0•73 (RAD) 6•76 (GRAD)	e penalised once in Q8, Q9, Q13 or Q17	
Working must			
1. (a) cos	$ST = \frac{10 \cdot 3^2 + 7 \cdot 2^2 - 5 \cdot 6^2}{2 \times 10 \cdot 3 \times 7 \cdot 2} = \frac{126 \cdot 57}{148 \cdot 32} \rightarrow 31 \rightarrow$)
(b)	$\frac{10\cdot 3^2 + 7\cdot 2^2 - 5\cdot 6^2}{2\times 10\cdot 3\times 7\cdot 2} = \frac{126\cdot 57}{148\cdot 32} \rightarrow 31 \rightarrow$	271 award 2/4 ×√√×	
2. (a) cos	$sT = \frac{7 \cdot 2^2 + 5 \cdot 6^2 - 10 \cdot 3^2}{2 \times 7 \cdot 2 \times 5 \cdot 6} = \frac{-22 \cdot 89}{80 \cdot 64} \rightarrow 106$	\rightarrow 346 award 3/4 × $\checkmark \checkmark \checkmark$ (see Note 4))
(b)	$\frac{7 \cdot 2^2 + 5 \cdot 6^2 - 10 \cdot 3^2}{2 \times 7 \cdot 2 \times 5 \cdot 6} = \frac{-22 \cdot 89}{80 \cdot 64} \rightarrow 106$	\rightarrow 346 award 2/4 × $\checkmark \checkmark \times$	

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark	
14.			Method 1	Method 1	2	
			 ¹ isolate term in y or divide throughout by 5 	• ¹ $-5y = + 20$ or $ 20 = 5y$ or $\frac{2x}{5} - \frac{5y}{5} = \frac{20}{5}$		
			 ² state coordinates (must use brackets) 	• ² (0, -4)		
			Method 2	Method 2		
			• ¹ substitute $x = 0$ into equation	• 1 2×0-5 <i>y</i> = 20		
			 ² state coordinates (must use brackets) 	• ² (0, -4)		
1 2	 Notes: 1. Correct answer without working award 2/2 2. Disregard errors in the <i>x</i> term for the award of •¹ 3. For finding where the line crosses the <i>x</i>-axis, (10, 0), with working award 1/2 					
Com	Commonly Observed Responses					
1	1. 0, -4 (no working necessary) award $1/2 \checkmark \times$					
2	. <i>y</i> =	=4	(no working necessary) award 1/2	/ x		

Q	Question		Generic scheme	Illustrative scheme	Max mark	
15.			• ¹ start to divide fractions	• $\frac{n}{n^2 - 4} \times \frac{n - 2}{3}$ • $\frac{n}{3} (n + 2)(n - 2)$ • $\frac{n}{3} \frac{n}{3(n + 2)}$ or $\frac{n}{3n + 6}$ S	3	
			• ² factorise	• ² $(n+2)(n-2)$		
			• ³ multiply and simplify	• ³ $\frac{n}{3(n+2)}$ or $\frac{n}{3n+6}$ S		
Note 1		ect a	nswer without working 0/3			
2	. For	subse	quent incorrect working, the final mar	k is not available		
	eg	(a) – 3	$\frac{n}{n(n+2)} = \frac{n}{3n+2}$ award 2/3	∕√x		
	(b) $\frac{\hbar}{3(\hbar+2)} = \frac{1}{3(1+2)} = \frac{1}{9}$ award 2/3 $\checkmark \checkmark \times$					
	Commonly Observed Responses: $n = 3(n+2)$ $n = n^2 - 4$ n					
	$\cdot \frac{1}{n^2}$	÷ - 4	$\frac{3(n+2)}{n^2-4} \rightarrow \frac{n}{n^2-4} \times \frac{n^2-4}{3(n+2)} \rightarrow \frac{n}{3(n+2)}$	award 3/3		

Q	uestion	Generic scheme	Illustrative scheme	Max mark
16.		• ¹ start valid strategy	• 1 40 ² + 40 ² or 40 ² + 70 ² (stated or implied by • ²)	4
		• ² continue strategy	$\bullet^2 \sqrt{40^2 + 40^2 + 70^2}$	
		• ³ calculate length of space diagonal	• ³ 90	
		• ⁴ valid conclusion with comparison	• ⁴ Yes, since $85 < 90$	

Question	Generic scheme	Illustrative scheme	Max mark					
Notes: 1. Correct a	nswer without working 0/4							
2. Accept co	prrect use of cosine rule							
3. Accept e	3. Accept eg $\begin{pmatrix} -40 \\ 40 \\ 70 \end{pmatrix} \rightarrow \sqrt{(-40)^2 + 40^2 + 70^2}$ for the award of \bullet^1 and \bullet^2							
	ly be awarded for a valid conclusion an /thagoras (or trigonometric) calculatior		ned					
(b) v	• ⁴ : $ \frac{40^2 + 40^2 + 70^2}{40^2 + 40^2 + 70^2} = 90 $; Yes, since the un $ \frac{40^2 + 40^2 + 70^2}{40^2 + 70^2} = 90 $; Yes $ \frac{1}{40^2 + 70^2} = 80 \cdot 62 $; No, since the lock	award 3/4 🗸						
Commonly Obse	rved Responses:							
	$+70^{2} = 80.62;$ No, since $85 > 80.62$ $+40^{2} = 56.56;$ No, since $85 > 56.56$							
	$\frac{1}{1+40^2} = 56 \cdot 56 = 57 \rightarrow \sqrt{57^2 + 70^2} = 90 \cdot 1000000000000000000000000000000000$							
. ,	$40^2 + 70^2 = 8100; 85^2 = 7225$ Yes, since $40^2 + 70^2 = 8100; 85^2 = 7225$ Yes, since							
(b) 40^2 + (c) 40^2 +	$40^2 = 3200; 85^2 = 7225$ No, since $3200 < 40^2 = 3200; 85^2 = 7225$ No, since $3200 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 < 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$ No, since $6500 \neq 70^2 = 6500; 85^2 = 7225$	 7225 award 1/4 √××× 7225 award 2/4 √××√ 						
5. $40^2 + 40$	$^{2} = 3200; 70^{2} = 4900$ No, since $3200 < 49$	000 award 1/4 √×××						

Q	uestion	Generic scheme	Illustrative scheme	Max mark
17.		 ¹ substitute correctly into area of triangle formula 	• $\frac{1}{2} \times 38 \times 55 \times \sin 75 (= 1009 \cdot 39)$	5
		• ² appropriate fraction for sector	• $^{2}\frac{75}{360}$	
		• ³ substitute correctly into area of sector formula	• ${}^{3}\frac{75}{360} \times \pi \times 30^{2} (=589.04)$	
		 ⁴ know to subtract area of sector from area of triangle 	 ⁴ evidence of area of triangle – area of sector 	
		 ⁵ calculate area of shaded region and state correct units 	• ⁵ 420(·3) cm ²	

	nswer without w			
	nswer without w			
Accept va		orking award 0/5		
	ariations in π			
Disregard	errors due to pr	emature rounding prov	vided there is evidence	
		D leading to $376(.40)$	cm ² should only be penalised once in (Q8,
• 4/ • 3/	5 if the use of R 5 if the use of R	AD has already been po AD has not already bee		
b) 405(·2	23) - 589(.04) =	$-183(\cdot 81) \text{ cm}^2$		
c) 589(·((04) - 405(.23) =	183(·81) cm ²		
(d) 589(·((-405(.23)	$) = 994(.28) \text{ cm}^2$		
				he
g must be	e shown:			
_	•••			
$\frac{1}{2} \times 38 \times 5$	$5 \times \sin 75 + \frac{75}{360} \times \frac{1}{360}$	$\pi \times 30^2 = 1598(.4)$ cm ²	award 4/5 🗸 🗸 🗸	
$\frac{1}{2} \times 38 \times 5$	$5 \times \sin 75 + \frac{75}{360} \times \frac{1}{3}$	$\pi \times 60 = 1048(.6) \text{ cm}^2$	award 3/5 🗸 🗸 🗙	
$\frac{75}{360} \times \pi \times$	$30^2 = 589(.0)$ cm	1 ²	award 2/5 ×√√××	
$\frac{1}{2} \times 38 \times 5$	$5 \times \sin 75 = 1009($	3) cm ²	award 1/5 √××××	
$\pi \times 30^2 =$	2827(·4) cm ²		award 0/5	
	29, Q13 c The follow • 4/ • 3/ a) -4050 b) 405(-2 c) 589(-0 d) 589(-0 • ⁵ is only area or mly Obsect g must but $\frac{1}{2} \times 38 \times 5$ $\frac{1}{2} \times 38 \times 5$	29, Q13 or Q17 The following answers sho • 4/5 if the use of R/ • 3/5 if the use of R/ a) -405(·23) -589(·04) = b) 405(·23) -589(·04) = c) 589(·04) - 405(·23) = d) 589(·04) - (-405(·23)) • ⁵ is only available for call area of a sector, where nly Observed Responses: g must be shown: $\frac{1}{2} \times 38 \times 55 \times \sin 75 - \frac{75}{360} \times 72$ $\frac{1}{2} \times 38 \times 55 \times \sin 75 + \frac{75}{360} \times 72$ $\frac{1}{2} \times 38 \times 55 \times \sin 75 + \frac{75}{360} \times 72$ $\frac{1}{2} \times 38 \times 55 \times \sin 75 + \frac{75}{360} \times 72$ $\frac{1}{2} \times 38 \times 55 \times \sin 75 + \frac{75}{360} \times 72$	Q9, Q13 or Q17 The following answers should be awarded • 4/5 if the use of RAD has already been period • 3/5 if the use of RAD has not already been • 3/5 if the use of RAD has not already been a) $-405(\cdot 23) - 589(\cdot 04) = -994(\cdot 28) \text{ cm}^2$ b) $405(\cdot 23) - 589(\cdot 04) = -183(\cdot 81) \text{ cm}^2$ c) $589(\cdot 04) - 405(\cdot 23) = 183(\cdot 81) \text{ cm}^2$ d) $589(\cdot 04) - (-405(\cdot 23)) = 994(\cdot 28) \text{ cm}^2$ • ⁵ is only available for calculating the sum or dir area of a sector, where the area of the triang must be shown: $\frac{1}{2} \times 38 \times 55 \times \sin 75 - \frac{75}{360} \times \pi \times 60 = 970(\cdot 1) \text{ cm}^2$ $\frac{1}{2} \times 38 \times 55 \times \sin 75 + \frac{75}{360} \times \pi \times 30^2 = 1598(\cdot 4) \text{ cm}^2$ $\frac{1}{2} \times 38 \times 55 \times \sin 75 + \frac{75}{360} \times \pi \times 60 = 1048(\cdot 6) \text{ cm}^2$ $\frac{75}{360} \times \pi \times 30^2 = 589(\cdot 0) \text{ cm}^2$ $\frac{1}{2} \times 38 \times 55 \times \sin 75 = 1009(\cdot 3) \text{ cm}^2$	The following answers should be awarded • 4/5 if the use of RAD has already been penalised in Q8, Q9 or Q13 • 3/5 if the use of RAD has not already been penalised in Q8, Q9 or Q13 a) $-405(\cdot 23) - 589(\cdot 04) = -994(\cdot 28) \text{ cm}^2$ b) $405(\cdot 23) - 589(\cdot 04) = -183(\cdot 81) \text{ cm}^2$ c) $589(\cdot 04) - 405(\cdot 23) = 183(\cdot 81) \text{ cm}^2$ d) $589(\cdot 04) - (-405(\cdot 23)) = 994(\cdot 28) \text{ cm}^2$ • ⁵ is only available for calculating the sum or difference of the area of a triangle and t area of a sector, where the area of the triangle is calculated using trigonometry n ly Observed Responses: g must be shown: $\frac{1}{2} \times 38 \times 55 \times \sin 75 - \frac{75}{360} \times \pi \times 60 = 970(\cdot 1) \text{ cm}^2$ award $4/5 \checkmark \checkmark \checkmark$ $\frac{1}{2} \times 38 \times 55 \times \sin 75 + \frac{75}{360} \times \pi \times 30^2 = 1598(\cdot 4) \text{ cm}^2$ award $4/5 \checkmark \checkmark \checkmark$ $\frac{1}{2} \times 38 \times 55 \times \sin 75 + \frac{75}{360} \times \pi \times 60 = 1048(\cdot 6) \text{ cm}^2$ award $3/5 \checkmark \checkmark \times \checkmark$ $\frac{75}{360} \times \pi \times 30^2 = 589(\cdot 0) \text{ cm}^2$ award $2/5 \times \checkmark \times \times$ $\frac{1}{2} \times 38 \times 55 \times \sin 75 = 1009(\cdot 3) \text{ cm}^2$ award $1/5 \checkmark \times \times \times$

Q	uestio	'n	Generic scheme	Illustrative scheme	Max mark
18.	(a)		Method 1	Method 1	3
			• ¹ state linear scale factor	• ¹ eg $\frac{24}{16}$ or equivalent	
			• ² know to multiply volume by cube of linear scale factor	• ² 576 × $\left(\frac{24}{16}\right)^3$	
			• ³ correct calculation (must involve a power of the scale factor), valid comparison and conclusion	 ³ 1944 ≠ 1125, so the cartons are not similar 	
			<u>Method 2</u>	<u>Method 2</u>	
			• ¹ state linear scale factor	• ¹ eg $\frac{16}{24}$ or equivalent	
			• ² know to divide volume by cube of linear scale factor	• ² 576 ÷ $\left(\frac{16}{24}\right)^3$	
			• ³ correct calculation (must involve a power of the scale factor), valid comparison and conclusion	• ³ 1944 ≠ 1125 , so the cartons are not similar	
			Method 3	Method 3	
			• ¹ state volume scale factor	• ¹ eg $\frac{1125}{576}$ or equivalent	
			• ² know to multiply depth by cube root of volume scale factor	• $^{2} \sqrt[3]{\frac{1125}{576}} \times 16$	
			 ³ correct calculation (must involve a root of the volume scale factor), valid comparison and conclusion 	• ³ 20 ≠ 24 , so the cartons are not similar	
			<u>Method 4</u>	<u>Method 4</u>	
			• ¹ state linear scale factor	• ¹ eg $\frac{24}{16}$ or equivalent	
			• ² know to compare cube of linear scale factor with volume scale factor	• ${}^{2}\left(\frac{24}{16}\right)^{3}$ and $\frac{1125}{576}$	
			• ³ correct calculation (must involve a power of the scale factor), valid comparison and conclusion	 ³ 3·375 ≠ 1·95, so the cartons are not similar 	

Question		on	Generic scheme	Illustrative scheme	Max mark	
18.	(a)		Method 5	Method 5		
			• ¹ state volume scale factor	• ¹ eg $\frac{1125}{576}$ or equivalent		
			• ² know to compare cube root of volume scale factor with linear scale factor	• $\sqrt[3]{\frac{1125}{576}}$ and $\frac{24}{16}$		
			• ³ correct calculation(must involve a root of the volume scale factor), valid comparison and conclusion	• 3 1.25 \neq 1.5 , so the cartons are no similar	t	
Note 1.		ect ar	nswer without working award 0/3			
2.			vard of \bullet^1 accept a rounded or truncate r evidence of the scale factor eg $\frac{1125}{576}$		ecimal	
3.			emature rounding leads to an inaccurate			
	eg 1	1125×	$\left(\frac{16}{24}\right)^3 \rightarrow 1125 \times 0.7^3 = 385.875; 385.875$	75 $≠$ 576, so the cartons are not simil	ar	
			_ '/	award 2/3		
4.			vard of • ³ there must be a numerical co e different'; a simple statement of 'not		e two scale	
Com	monly	0bse	erved Responses:			
	-		$\left(\frac{6}{4}\right)^3 = 333 \cdot 3; 333 \cdot 3 \neq 576$, so the cart	ons are not similar awa	rd 3/3	
2.	(a) 5	$576 \times \frac{7}{1}$	$\frac{24}{16} = 864$; 864 ≠ 1125, so the cartons ar	e not similar awa	rd 1/3 √××	
	(b) 5	$\overline{576} \times \frac{1}{2}$	$\frac{16}{24}$ = 384;384 \neq 1125, so the cartons are	e not similar awa	rd 1/3 √××	
3.	(a) 5	576×($\left(\frac{24}{16}\right)^2 = 1296$; 1296 \neq 1125, so the cart	ons are not similar awa	rd 2/3 √×√	
	(b) 5	576×($\left(\frac{16}{24}\right)^2 = 256$; 256 \neq 1125, so the cartons are not similar award 2/3 $\checkmark \times 10^{-10}$			
4.	(a) -	$\frac{576}{16^3} =$	$0.14, \frac{1125}{24^3} = 0.08; 0.14 \neq 0.08, s_{10}$	o the cartons are not similar awa	rd 3/3	
	(b) -	$\frac{576}{16^2} =$	$2 \cdot 25, \frac{1125}{24^2} = 1 \cdot 95; 2 \cdot 25 \neq 1 \cdot 95,$ so the	e cartons are not similar awa	rd 2/3 √×√	
	(c) -	$\frac{576}{16} =$	$36, \frac{1125}{24} = 46 \cdot 875; 36 \neq 46 \cdot 875, so the c$	cartons are not similar awa	rd 1/3 √××	

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
18.	(b)		Method 1	Method 1	2
			• ¹ find volume scale factor	• $1 \frac{1500}{576}$	
			• ² correct calculation to find height (must involve a root of the volume scale factor)	• ² $\sqrt[3]{\frac{1500}{576}} \times 16 = 22(\cdot 0 \text{ cm})$	
			Method 2	Method 2	
			• ¹ find volume scale factor	• $1 \frac{576}{1500}$	
			 ² correct calculation to find height (must involve a root of the volume scale factor) 	• ² $16 \div \sqrt[3]{\frac{576}{1500}} = 22(\cdot 0 \text{ cm})$	
Note 1		rect a	nswer without working award 0/2		
2	. Disı	regarc	l errors due to premature rounding prov	vided there is evidence	
Com	monly	0bse	erved Responses:		
1	. <u>150</u> . 57	$\frac{00}{6} \times 16$	$x = 41.66$ award 1/2 $\checkmark x$		
2	$\sqrt{\frac{1}{5}}$	500 576 ×	16=25·81 award 1/2 √×		
3	$\cdot \sqrt[3]{\frac{1}{1}}$	500 125 ×	24=26·41 award 1/2 ×√		

[END OF MARKING INSTRUCTIONS]